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Abstract

Suppose that an inspector is requested to check the condition of a failure-prone machine and
arrives with any time delay at the facility where the machine is equipped. Since the failure of
machine can be detected only by checking, the problem is to determine the checking request time
maximizing the criterion called the cost effectiveness. In this paper, we consider two checking
request policies maximizing the cost effectiveness criteria, and develop the statistical algorithms
to estimate them, provided that the complete failure time data are available.

1 Introduction

Consider a failure-prone machine whose failure can be detected only by checking. Without any loss of
generality, it is assumed that the checking is perfect, i.e. the machine does not deteriorate/fail by checking.
Suppose that the inspector is requested to check the condition of a machine at any time after it begins
operating, and that the constant time period called the delay time or waiting time is needed for the inspector
to arrive at the facility where the machine is equipped. Checking is carried out as soon as the inspector
arrives there and the time for checking itself can be negligible. If the machine has already failed up to the
inspector’s arrival time point, the corrective replacement of the failed machine is made at that time of point.
On the other hand, i.e., if the machine does not fail during the checking request period and/or the waiting
time period, we can consider two cases: In Model 1, the preventive replacement is performed immediately
at the arrival time point. In Model 2, the inspector continues monitoring the condition of the machine and
waits until it fails.

Yamada and Osaki (1980, 1981) consider these two models and derive the optimal checking request
policies maximizing the cost effectiveness criteria, which are proposed by Trott (1965) and Winlund (1965).
More precisely, Yamada and Osaki (1980, 1981) describe the stochastic behavior of the above models by
Markov renewal processes and obtain analytically not only the steady-state availability and the expected
number of visits to arbitrary states per unit time in the steady state but also the optimal checking request
policies. Yamada and Osaki (1978) further extend the above models and propose the different checking
request policy taking account of the surveillance limit.

In this paper, we consider the same checking request policies as Yamada and Osaki (1980, 1981), and
develop the statistical algorithms to estimate the optimal checking request policies which maximize the
cost effectiveness, provided that the complete failure time data are available. By applying the similar but
somewhat different technique based on the equilibrium distribution from Aven (1987) and Dohi et al. (1996),
we provide non-parametric estimators of the optimal checking request policies.

2 Model Description

Notation:
We define the following notation: F (t): continuous lifetime distribution, λ (> 0): MTTF (Mean Time To

Failure), ψ(·) = 1 − ψ(·): survivor function, L (> 0): delay (waiting) time, t0 (≥ 0): checking request time
(decision variable), cc (> 0): checking cost, cr (> 0): corrective or preventive replacement cost, cd (> 0):



system down cost per unit time, cs (> 0): surveillance cost per unit time, Cj(t0): expected cost per unit
time in the steady state for Model j (= 1, 2), Aj(t0): steady-state system availability for Model j (= 1, 2),
Ej(t0): cost effectiveness for Model j (= 1, 2).

Model 1:
Let us consider the situation where a machine operation starts at time t = 0, where the machine failure

may be identified only by checking. Suppose that the checking is requested at time t0 just after instruction
of the original machine. The inspector arrives at the facility where the machine is equipped, after the delay
time L which is assumed to be constant, and checks the condition of the machine. If the machine has already
failed, then it is replaced correctively by a new one, otherwise the preventive replacement is performed, where
the lifetime distribution of the machine has an arbitrary and absolutely continuous probability distribution
function F (t) with finite mean λ. Then, from the familiar renewal reward argument, we obtain the expected
cost per unit time in the steady state and the steady-state system availability as

C1(t0) =
{

cc + cr + cd

∫ t0+L

0

F (x)dx
}

/(L + t0), (1)

A1(t0) =
{∫ t0+L

0

F (x)dx
}

/(L + t0), (2)

respectively.

Model 2:
In Model 1, it is assumed that the inspector replaces the machine even if it is still operating when

he/she arrives at the facility. However, since the inspector can identify the machine failure when it happens,
the preventive replacement of the non-failed machine may not be always useful. That is, if the inspector
can monitor the condition of the machine continuously until it fails, the corrective replacement of the failed
machine is carried out at the failure time point. This is due to the assumption that the preventive replacement
cost is equivalent to the corrective maintenance one. In this situation, the expected cost per unit time in
the steady state and the steady-state system availability are given by

C2(t0) =
{

cc + cr + cd

∫ t0+L

0

F (x)dx + cs

∫ ∞

t0+L

F (x)dx
}

/
{

λ +
∫ t0+L

0

F (x)dx
}

, (3)

A2(t0) = λ/
{

λ +
∫ t0+L

0

F (x)dx
}

, (4)

respectively.

3 Optimal Checking Request Policies

Following Yamada and Osaki (1980, 1981), define the cost effectiveness by

Ej(t0) =
[steady − state system availability]

[expected cost per unit time in the steady state]
=

Aj(t0)
Cj(t0)

, j = 1, 2, (5)

which denotes the mean operative time per unit mean cost. Yamada and Osaki (1980, 1981) derive the
optimal checking request policy t∗0 which maximizes the cost effectiveness Ej(t0) (j = 1, 2). The following
results summarize the optimal checking request policies under the cost effectiveness criteria.

Proposition 3.1: (i) For Model 1, if (cr + cc)F (L) > cd

∫ L

0
xdF (x), then there exists a finite and unique

optimal checking request policy t∗0 (0 < t∗0 < ∞) satisfying the non-linear equation:

{cr + cc + cd(t∗0 + L)}F (t∗0 + L) = cd

∫ t0+L

0

F (x)dx (6)



with

E1(t∗0) = F (t∗0 + L)/{cdF (t∗0 + L)}, (7)

otherwise t∗0 = 0 with E1(0) =
∫ L

0
F (x)dx/{cr+cc+cd

∫ L

0
F (x)dx}, i.e. it is optimal to request the inspection

when the machine begins operating.

(ii) For Model 2, if cs > (cd + cs)F (L), then there exists a finite and unique optimal checking request policy
t∗0 (0 < t∗0 < ∞) satisfying the non-linear equation:

(cs + cd)F (t0 + L) = cs (8)

with

E2(t∗0) = λ/
{

cr + cc + csλ− (cd + cs)
∫ t∗0+L

0

xdF (x)
}

, (9)

otherwise t∗0 = 0 with E2(0) = λ/{cr + cc + cd

∫ L

0
F (x)dx + cs

∫∞
L

F (x)dx}.

In the following section, we consider the situation where the lifetime distribution is unknown but the corre-
sponding lifetime data are available.

4 Non-Parametric Estimation of Optimal Policies

Define the equilibrium distribution of the lifetime distribution function:

F ∗(t) =
1
λ

∫ t

0

F (x)dx. (10)

It is seen immediately that F ∗(0) = 0 and F ∗(∞) = 1. The following result gives a graphical interpretation
for Proposition 3.1.

Theorem 4.1: (i) For Model 1, the optimal checking request policy has to satisfy

max
0≤t0<∞

:
F ∗(t0 + L)

(cc + cr)/cd + t0 + L
. (11)

(i) For Model 2, the optimal checking request policy has to satisfy

max
0≤t0<∞

: F ∗(t0 + L)− cd

λ(cd + cs)
(t0 + L). (12)

From Theorem 4.1, it can be found that the optimal checking request policy t∗0 for Model 1 is given by the
point t∗0 + L maximizing the tangent slope to the curve F ∗(t0 + L) from the point (−(cc + cr)/cd, 0) in the
two-dimensional plane (t0 + L, F ∗(t0 + L)) ∈ [L,∞)× [F ∗(L),∞). On the other hand, the optimal checking
request policy for Model 2 can be characterized by the point t∗0 +L with the maximum vertical distance from
the straight line cd(t0+L)/{λ(cd+cs)} to the curve F ∗(t0+L). The conditions (cr +cc)F (L) > cd

∫ L

0
xdF (x)

and cs > (cd + cs)F (L) can be also interpreted geometrically on the graph.
Next consider the estimation problem of the optimal checking request policies. Suppose an ordered

complete sample 0 = y(0) ≤ y(1) ≤ y(2) ≤ · · · ≤ y(n) from the underlying distribution function F , which is
unknown. We further define the data sequence x(i) = y(i)+L (i = 1, 2, · · · , n;x(0) = L). As a non-parametric



estimator of the equilibrium distribution F ∗(t), we define the scaled total time on test statistics based on
this sequence by

Uin =
Tin

Tnn
, i = 1, 2, · · · , n, (13)

where

Tin =
i∑

j=1

(n− j + 1)(x(j) − x(j−1)), i = 1, 2, · · · , n; T1n = ny(1). (14)

Plotting the point (x(i), Uin), (i = 1, 2, · · · , n) and connecting them by line segments yield a piecewise
continuous curve in the two-dimensional plane. To this end, the optimization problem is reduced to find the
point x(i∗) (y(i∗)) so as to maximize the tangent slope to the curve (x(i), Uin) from the point (−(cc+cr)/cd, 0)
or the vertical distance from the cdx(i)/{λ(cd + cs)} to Uin (i = 0, 1, · · · , n).

The following theorem is the main result of this paper.

Theorem 4.2: Suppose that the optimal checking request policy for Model j (= 1, 2) has to be estimated
from an ordered complete sample 0 = y(0) ≤ y(1) ≤ y(2) ≤ · · · ≤ y(n) of lifetime data from an absolutely
continuous lifetime distribution F , which is unknown. For x(i) = y(i) + L (i = 1, 2, · · · , n; x(0) = L),
the non-parametric estimators of the optimal checking request policies which maximize Ej are given by
t̂∗0 = y(i∗) = x(i∗) − L, where

i∗ =
{

i | max
0≤i≤n

:
Uin

(cc + cr)/cd + x(i)

}
(15)

and

i∗ =
{

i | max
0≤i≤n

: Uin −
cdx(i)

λ(cs + cd)

}
(16)

for Model j (= 1, 2), respectively.
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